
 

 

 Abstract—When a robot interacts with an individual, it is 

important to know with whom it is interacting, either to avoid 

social faux pas or remember user preferences.  Continuous 

person identification during normal interactions, however, is 

extremely challenging.  A person is periodically speaking to the 

robot, while at the same time changing pose, looking in other 

directions, etc.  In this paper, we address the problem of 

continuous person identification using both speech and face 

recognition.  We demonstrate that both modalities can together 

produce a system that is superior at person identification than 

from using a single modality alone.  

I. INTRODUCTION 

nder near optimal conditions, people are adept at 

identifying others through voice or face even if they do 

not have a large amount of experience with them [1].  As 

should be expected, however, under less ideal circumstances, 

person identification degrades, visually [2] and aurally [3], 

yet people still recognize other people. Clearly, a 

combination of these cues (and others) is more effective 

under such situations than either speaker or face recognition 

alone [4]. Multiple cues are especially useful when one (but 

not both or all) cue is degraded in some way.  Our goal in 

this paper is to provide humanoid robots with the ability to 

recognize people through multiple cues, fusing results from 

different perceptual domains to provide superior recognition.   

One of the most interesting findings in human-robot 

interaction is that people have certain expectations of 

embodied agents [5].  These expectations can be set by the 

physical attributes of the robot (e.g., how the robot actually 

looks and sounds) [5-7]. Since humanoid robots have so 

many shared characteristics with people, it sets people’s 

expectations very high.  Thus, it is critical to be able to 

provide humanoid robots with several basic capabilities; 

robust person identification in a variety of different 

situations and circumstances is one of these key components 

of human-robot interaction. 

In this paper, we present the results of work towards 

achieving our goal of natural person identification in human 

robot interaction.  Our humanoid robot platform is the 
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Mobile-Dexterous-Social (MDS) Robot
1
 called Octavia.  

The MDS robot neck has 18 DoF for the head, neck and eyes 

allowing the robot to look at various locations in 3D space 

(pan, tilt).  Perceptual inputs include two color video 

cameras, an SR3000 camera to provide depth information, 

and a 4-element microphone array. For this work, Octavia 

moves its head and torso to change its visual field of view in 

response to sound source localization [8]. Person 

identification is then performed using two separate systems: 

face recognition and speaker recognition. The two are fused 

together by a combination of decision-level and score-level 

fusion. Together with sound source localization, the fused 

recognition engine can dynamically track a multi-speaker 

interaction with the robot. 

This paper is organized as follows: related work in face 

and speaker recognition is presented in the next section; 

section III describes the face recognition system, including 

results from a user study; section IV summarizes the auditory 

systems for speaker recognition and sound source 

localization; and section V describes the fused system and its 

advantages. 

 
1 http://robotic.media.mit.edu/projects/robots/mds/overview/overview.html  
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Fig1. Octavia is an MDS robot with a 4-element 

microphone array mounted on the body and 

cameras in the eyes.  
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II. RELATED WORK 

Face recognition is a widely studied biometric that has 

attracted the attention of many researchers in different fields.  

Turk and Pentland [9] developed the well-known 

“Eigenfaces” approach for face recognition.  Features are 

extracted using principle components analysis (PCA) on 

training images.  A probe image is classified by comparing 

the Eigenvalues of the probe images against Eigenvalues of 

the gallery images. Others have explored Independent 

Components Analysis (ICA) [10] and Linear Discriminant 

Analysis (LDA) [11] for feature extraction.  Recent work by 

Wright et al. [12] explored the use of sparse coding for face 

recognition.  Features are extracted from a set of training 

images using l
1
 minimization.  The quality of the match is 

evaluated from reconstruction error. 

Similar to face recognition, speaker recognition is the 

ability to identify a speaker from their voice. In robotics, 

speaker recognition has been most commonly tied to speaker 

position. By separating out different speech streams and 

localizing the speaker, the speaker is identified for purposes 

of interaction [13]. More recent work has focused on 

improving tracking of those moving speakers [14], but 

speaker recognition from voice is uncommon. An exception 

is work by Krsmanovic [15], who demonstrated speaker 

recognition on a robot using unique phrases for each speaker 

in conjunction with a Markov decision process. In contrast, 

this paper addresses the more general problem of text 

independent speaker recognition, where a user can say 

anything and be identified by their voice. A solution 

common to telephones and tele-conferencing applications are 

Gaussian mixture models [16]. More recent work, which 

may be of particular interest to robotics, are efforts to 

account for variable speaker positions and signal-noise ratios 

[17]. Without enough training data, new algorithms are 

necessary to avoid mismatched noise conditions, and lower 

precision. 

  The combined problem of face recognition and speaker 

identification is an emerging area for improving recognition 

rates.  Palanivel and Yegnanaravana [18] use decision level 

fusion to integrate speech, face recognition and visual speech 

using a weighted confidence measure.  This work uses a 

database created from news anchor footage to demonstrate 

an increase in overall recognition by combining modalities.  

We expand upon this concept by considering situations 

where either the face is not visible or the person is not 

speaking.   

Outside of biometrics, there have been fusion efforts in 

recognizing toys that are partially occluded, visually and 

aurally [19]. This work, which fuses audio and visual 

coefficients in real-time using a neural network, shows a 

clear advantage in identifying objects hidden from the robots 

eyes or ears. 

III. ROBOT VISION 

We use the face recognition approach developed by 

Kamgar-Parsi et al. [20].  Our approach operates under the 

assumption that we are able to recognize certain people, i.e. 

those that Octavia “knows”, while rejecting others as 

unfamiliar, much like humans.  This approach is based on 

identifying and enclosing the region RT in the human face 

space that belongs to the target person T. 

Face recognition first requires a training phase before it 

can be used to identify a target person. When the system is 

tested, if a face is projected inside RT it will be identified as 

the target person, otherwise rejected as being T. During 

training, however, the region RT is identified with the help of 

a human critic. Suppose we have the image IT of the target 

person T, and a large database, F, of facial images containing 

images f1,f2,...,fn. The image IT is morphed toward the image 

fk (k is an element of n) until it becomes borderline 

acceptable, i.e., significantly different from IT, yet still 

recognizable as T according to the human critic.  Next, IT is 

morphed even further toward fk until it becomes borderline 

unacceptable, i.e. some resemblance to the target person, but 

not enough to be recognizable as that person.   An example 

of how the region RT in the human face space is enclosed is 

shown in Figure 2. In Figure 2, the second left picture is still 

recognizable as Jennifer Aniston (positive borderline 

exemplar, blue dots), while the next picture is not (negative 

borderline exemplar, red dots).  Likewise, morphing 

Jennifer’s image towards many other people will generate 

sufficient landmarks to identify and enclose the space 

belonging to Jennifer (shaded area). 

Morphing percentages are established with the help of a 

human critic.  Typically, a human critic would need to 

examine morphed images of the target person, IT, toward 

only some 10 to 20 images in F to determine the average 

morphing percentages for the borderline acceptable and 

unacceptable exemplars. Applying those percentages and 

using images in F, the computer will then automatically 

generate and label a large training set. In practice, it is 

adequate if most of the generated exemplars are projected 

where intended, because an appropriate classifier will fit 

hyperplanes to the generated data.  

 
Fig 2. Jennifer Aniston, the leftmost picture, is morphed towards 

Angelina Jolie, the rightmost picture 
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The remainder of this section discusses: 1) the details of 

the image morphing procedure; 2) the training procedure, 

which uses the morphing results as part of the training 

process; and 3) the performance of the face recognition 

system on Octavia. 

A. Image Morphing 

    To morph two faces, we warp using facial landmarks 

then cross-dissolve the warped images.  We locate facial 

landmarks using Active Shape Models (ASM), a statistical 

model that captures shape.  They fit a shape by iteratively 

moving local feature points towards an individual landmark, 

then fitting of all points using the statistical model.  This 

process that repeats until ASM has converged.   

We warp the eyes and nose region of the face using 

landmarks detected on the eyes, nose, and eyebrows.  A 

Delaunay triangulation T=<v,e> builds a mesh of triangles 

whose vertices (v) are facial landmarks connected by edges 

(e).  To warp two faces (f1 and f2) using a morphing 

percentage m, we move the landmarks l1 and l2 to a new 

location lm = ml1 + (1 – m)l2.  We find the Delaunay 

triangulation Tm using lm.  The process of morphing involves 

moving the respective landmarks from l1 and l2 to their new 

location lm.  We warp each triangle by sampling pixel values 

using Barycentric coordinates. The morphed image IM is the 

two warped faces combined using a percentage (p) of F1 and 

(1-p) of F2.  

B. Training Classifiers 

We build a dedicated neural network to recognize each 

individual that Octavia knows.  To create these neural 

networks, we must begin by collecting a sufficient amount of 

training data. We train each neural network starting with a 

single prototypical face.  We evaluate the resulting network; 

incrementally add faces that do not project inside of RT.  We 

repeat this process until the manifold for the subject 

established from the training data has been properly 

captured.  In our experiments, we find that anywhere 

between 10-15 faces are sufficient to describe RT. 

We perform a similar incremental process to find the set 

of images to warp against.  We begin with a small set of 

randomly selected images, and then incrementally add 

images of imposters if they project inside of RT. 

C. Online Recognition 

   We train Octavia to recognize the faces of people that 

are looking at her.  That is, we focus mainly on frontal 

images of people.  The first step in recognition is face 

detection, which we perform using the Viola-Jones face 

detector in OpenCV.  Our face detector is tuned to recognize 

frontal faces within approximately 2m of the robot.     

Next, pupils are located using an eye detector.  The pupil 

detector looks for dark regions in the approximate area of the 

eyes of the subject. Detected eyes are moved automatically 

by the system to a canonical position to align faces.  Finally, 

we process the aligned face to normalize intensity. 

Recognition involves two steps.  The first is to check the 

pose of the subject using a dedicated pose-network.  The 

pose network was trained on a set of frontal and profile 

images.  The purpose of the pose network is to further reduce 

the number of images processed to only those where the 

subject is looking at Octavia.  The second step is to evaluate 

each face using the dedicated neural networks.    We use a 

sliding window to evaluate the scores from each dedicated 

network over a three-frame window.  The resulting score is 

compared to a threshold.  If it exceeds this threshold, we say 

the person is recognized.   

Figure 3 shows the ROC curves evaluating our approach.  

We evaluate our results using a set of individuals that 

Octavia knows.  Each subject participated in two different 

sessions.  The first session was used to train the network; the 

second session was used to test the network.  

IV. ROBOT AUDITION 

Octavia is equipped with 4 lavalier type microphones: 2 

on the body, and 2 on the backpack in the rear. Data 

acquisition is performed by a dedicated DMM-32X-AT 

PC104 card. This auditory information is currently used for 

two distinct purposes. The first is speaker recognition, which 

currently only uses feedback from a single microphone 

mounted on the left upper body. Samples are collected at 

8192 Hz. 

The second use of the microphone array in this work is 

speech localization. Speech localization is critical for fusion, 

because it augments face recognition very nicely. Without 

the means to rotate to a speaker, face recognition is limited 

to a very narrow field of view. By enabling robotic rotation 

towards a detected speech source, the applicability of face 

recognition system is expanded to more general human-robot 

interaction scenarios. In contrast to speaker recognition, 

speech localization utilizes all four channels. 

 

Fig 3. ROC curve of our approach to face 

recognition.  The y-axis shows the hit rate, while the 

x-axis shows the false accept rate 
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Fig 4. Precision and classification rate decrease with the number of 

speakers in the set. 

A. Speaker Recognition 

Speaker recognition on Octavia is based on Gaussian 

mixture models (GMM), as described by Quatiri [16] for use 

in speaker verification. Individuals are first recorded in a 

training session using the onboard microphone array.  Then 

that training data is used to create a model for use in real-

time recognition of that specific speaker. 

To build a model of the speaker, recorded training data is 

processed to extract the first 10 mel-frequency cepstral 

coefficients (MFCC’s) for each 10-msec frame. This 

produces a set of MFCC vectors. As the first MFCC is 

correlated to the energy of the audio segment, we apply a 

threshold to it for separating speech from ambient noise. 

This speech detection method assumes that all loud, wide 

spectrum sounds heard by the robot are actually speech, but 

is otherwise effective for removing quiet frames. A GMM 

with 50 components is then created from all remaining 

speech vectors using k-means. The resulting model consists 

of a centroid μi, a covariance matrix σi, and a prior 

probability pi for each component i. Except to identify the 

presence of speech, the first two MFCC’s are not used in 

model creation, leaving only 8 dimensions (R = 8). 

Models are created both for the speaker and an “imposter” 

created from all speech frames for other speakers in the data 

set. Given a speaker/imposter pair {Sk, Ik}, which will 

henceforth be called a speaker verifier, the odds of an audio 

segment belonging to speaker k are calculated as follows. 

First, MFCC vectors xm are extracted for the entire segment 

and quiet frames are removed. Next, for each vector, the 

probability of belonging to either model M  is determined 
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To avoid zeros in subsequent calculations, it is assumed 

that each vector had to belong to either the speaker or the 

imposter, and that each were equally likely. So, given an 

audio stream segment αt, which contains a set of speech 

frames m, the odds of a speaker being present at time t are:  
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For use with continuous streams, Ok is restricted to the 

range [-15,15] preventing extremely large values. A decay 

function is also added to bring all speaker likelihoods back 

to neutral (i.e. 50% or Ok=0) when no one is talking. 

Whenever an audio segment contains no speech, Ok is 

reduced by -0.2*Ok across all speakers k. 

B. Speaker Recognition Performance 

Speaker recognition for human-robot interaction presents 

a different set of challenges from previous recognition work 

in telephone related environments. People move in relation 

to the microphone, resulting in a varying, and low, SNR, the 

microphone(s) on the robot are not ideal for speech, and 

robot ego-noise varies over time as different motors are 

engaged and fans turned on/off. 

Therefore, to evaluate performance of a GMM based 

algorithm in a robotic scenario, a small user study was 

initiated. A total of 11 participants were involved in the 

study, but one was discarded for speaking too quietly for 

speech detection. The study was divided into two sections. 

First, data was collected from participants for building a 

speaker model during a training session. Then, participants 

were asked to speak on arbitrary topics from four different 

positions surrounding the robot to build test data set. During 

the training session, participants were asked to repeat a series 

of words and phrases, as well as speak freely for 20-sec on 

two subjects. The specific training protocol using for this 

work was based on the protocol used in creating the CSLU 

Speaker Recognition Corpus [21]. We, however, did not end 

up using the repeated words and utterances as part of our 

training data, because it lowered performance when 

recognizing speakers from free speech interaction. 

Furthermore, instead of contacting participants on different 

days, they were asked to repeat the protocol from two 

different locations relative to the array to include likely 

variations in speaking distance and incident angle. 

All testing data was then broken into 2-sec fragments for 

evaluation. Fragments not containing speech were discarded, 

leaving approximately 32 fragments per speaker. Each 

fragment was then analyzed by sets of verifiers, ranging in 

size from 2-8 speakers. At least one of the speakers in the 

verification set was the actual speaker, and different imposter 

models were constructed for each set of speakers analyzed. 

A successful classification, or true positive, was where the 

correct speaker had the highest log odds likelihood, and that 

likelihood was greater than a minimum threshold (i.e. 10). A 

false positive occurred when a verifier for an incorrect 

speaker scored highest, and higher than the same minimum 

threshold.  Fragments for whom all verifiers scored below 

the minimum threshold were considered unclassified. 

Figure 4 plots the resulting precision and classification 

rates versus group size. With only two speakers in a set of 

verifiers, the precision, or rate of true positives to both true 

and false positives, averages 92%. Even the worst 

performing speaker model has an 85% precision rate. These 
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rates drop rapidly with an increasing group size. By six 

speakers, the mean precision is only 75%, and the worst 

speaker model rates 50%. This, however, depends highly on 

the speakers in the set. One speaker in our test set had a 

significant spoken accent. That speaker’s model achieved 

100% precision. 

The classification rate, or the number of samples 

generating likelihoods greater than the minimum threshold vs 

total number of samples, also dropped with the size of the 

verification set. With only 2 speakers in the set, 83% of the 

samples are classified, dropping to 64% by 6 speakers. 

Analyzing the minimum threshold, which was set 

experimentally prior to the trial, revealed that lower 

thresholds would raise the classification rate while dropping 

the precision across all group sizes. 

C. Speech Localization 

Speech localization on Octavia is determined with an 

auditory evidence grid [14], a time delay on arrival based 

localization method. Every half-second sample of audio data 

from a four microphone array is evaluated for the presence 

of speech using the MFCC-based method described 

previously in section IV.A. Those samples containing speech 

are then analyzed using a generalized cross correlation 

algorithm to estimate the energy from a hypothetical set of 

sound sources located 1-m out from the robot at 1-deg 

intervals in a 180-degree arc. The energy across all 

hypothetical sources, when normalized, is a spatially 

organized likelihood of sound source location that can be 

combined over time using log-odds notation. When one 

strong, or multiple weaker measurements from a single 

speaker creates enough evidence (e.g. a threshold), Octavia 

rotates to face the speech target. 

As with speaker identification, samples not containing 

speech should lessen the likelihood of any speech source 

being present. This is performed by introducing neutral 

likelihoods, where all locations are equally likely, for all 

non-speech samples.  

V. INTEGRATED ROBOTIC SYSTEM 

Speaker and face recognition have different strengths and 

weaknesses, but are based on similar classification models, 

making them ideal for fusion. Face recognition, for instance, 

requires that an individual is looking at the robot, and that 

lighting conditions not change dramatically. Speaker 

recognition requires people to speak and to speak sufficiently 

loud. Both systems enable robotic recognition of people 

some of the time, but neither is adequate for continuous 

recognition of an active participant. Combining the two 

classifiers together limits the times in which the robot is 

unable to identify the speaker. 

In this section, the two recognition systems are fused 

together using a combination of decision-level and score-

level fusion. Subsection A demonstrates performance 

advantages of the combined approach. In subsection B, 

sound source localization and robotic movement is added to 

the combined system to enable multi-speaker person 

identification. 

A. Fused Recognition 

Both speaker recognition and face recognition use a 

threshold based classification system, where a model is 

created and used to estimate the likelihood of that person 

being present or not. The only complication in combining the 

two systems is their asynchronous recognition rates. Face 

recognition is completed at ~5 frames per second, while 

speaker recognition is updated in 10-msec increments. To 

combine the systems, an arbitrary synchronization time of 

0.5-sec was selected. Every half-second, face recognition is 

queried to retrieve the convolved response per speaker at 

time t, Φk(t). The convolution is a weighted average of the 

last 4 scores for each person in the watch list resulting in a 

likelihood with range [0,1]. For speaker recognition, the 

odds of each speaker having said anything are collected at 

time t. To give speaker recognition the same range as face 

recognition, a constant offset is added to Ok(t) and the 

combined score is divided by 30 (Omax –Omin). The two 

systems are then fused by weighted summation giving equal 

weight to both face and speaker recognition: 

 
      

2

)( minmaxmin OOOtOt
t kk

k


  

This score level fusion, however, does not make sense 

when there is reliable feedback is missing from either face 

recognition or speaker recognition. If no one is speaking, as 

determined by the first MFCC value (see Section III.A), then 

only face recognition means anything. Similarly, if the 

speaker is looking to the side, or otherwise not visible to the 

robot’s cameras, then speaker recognition results should be 

used alone. Therefore, to boost performance, decision-level 

fusion is also employed. When one of the sub-components is 

reporting that there is no data with which to make a decision, 

then the combined method defaults to the value of the 

remaining component.  

Figure 5 demonstrates this combined method for person 

identification. When a speaker turns their head away from 

the camera, face recognition drops to 0, but the combined 

system defaults to speaker recognition and successfully 

identifies the target. When the target is too quiet for speaker 

recognition, then the combined method relies on face 

recognition. Finally, when the wrong person would have 

been selected by speaker recognition, score-level fusion with 

face recognition overcomes. 

B. Multi-Speaker Interaction 

For multi-speaker interactions, however, the described 

fusion algorithm is incomplete. For one, the camera field of 

view is too limited, and so the robot must be rotated to face 

the speakers in order for face recognition to contribute 

correctly to the combined person identification system. This 

step is accomplished with the speech localization system 
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Fig 5. Likelihood results for each of the three systems (Speaker, Face, 

Combined), for a single recorded session. The combined likelihood 

improves performance over either speaker or face when one modality is 

missing. Furthermore, score level fusion corrects for a mistake in the 

speaker recognition (see grayed area).  

described in  ection  V.C. Our robot, Octavia, is capable of 

up to  0  of rotation to either side without rotating the 

Segway base. 

Another challenge, however, which was demonstrated by 

the human-subjects experiment is the limitations on speaker 

set size for speaker recognition. A robot may talk to many 

more than 5 people in a day, but all of their verifiers cannot 

be run simultaneously with any reasonable precision. Even 

assuming multi-speaker conditions, the number of people 

talking to the robot at one time is much lower, and 

reasonably handled by speaker recognition. So the robot 

needs to load speakers into the set dynamically. Face 

recognition, in combination with sound source localization, 

provides an elegant means for accomplishing this task. 

Face recognition is also limited in the number of faces it 

can be searching for simultaneously, but it can handle several 

times more potential candidates at one time then speaker 

recognition. Therefore, when face recognition strongly 

believes that a new speaker has entered the environment, a 

new speaker is dynamically included in the set of active 

speakers. This means that a new verifier is inserted with the 

new speaker model, and the imposter models for all existing 

speakers are updated to include the new speaker. Similarly, 

when a face has not been detected for a suitably long time 

(currently 5 minutes), that speaker can be removed from the 

set of active speakers and all imposter models updated 

accordingly. 

The combined speaker tracking system with speech 

localization, robotic movement, and dynamic speaker set 

creation, is implemented as a finite state automata (see 

Figure 6). Speaker models are stored in a database for easy 

access and retrieval. 

C. Discussion 

The system can load speaker models from a database 

based on face recognition results. Can it also create new 

speaker models? The existing system can, in fact, create new 

speaker models in place of loading an existing model when a 

speaker does not yet exist in the database. The data 

collection challenges, however, are not insignificant. 

Currently, when a face is detected that the robot does not 

have a model for, the robot asks an open ended question such 

as, “How is your day going?” and records the audio stream. 

After either a maximum collection time, 20-sec, or no speech 

is detected for 5-sec, the robot creates a new model and 

stores it in the database. 

Creating new models in this fashion, however, has its 

limitations. For one, it assumes that face recognition can 

detect the speaker, but there is no speaker model. This is not 

entirely unreasonable, as faces may have been learned 

somewhere other than on the robot itself, but that may be an 

uncommon state. More limiting, however, is that a speaker 

may not speak long enough, or loud enough to create a 

reasonable model, and without a true dialogue management 

system to get the user to speak for a longer period of time, 

the resulting speaker model will be very poor. 

A solution to this problem, and to other problems relating 

to poor speaker model precision, is online learning, or 

updating, of the speaker model. If the fused system is 

reasonably certain of the current speakers identity, but 

speaker recognition for that speaker is generally poor 

(perhaps the speaker has a cold), then new data could be 

collected and integrated into the model. This does risk 

adding bad data to a model, which could weaken models 

even further. However, there is currently no reliable method 

for updating models, and there needs to be one. Fusing data 

across sensory mediums with different fail points, and 

limiting updates to individual verifiers, may mitigate this 

negative outcome.  

 
Fig 6. Finite state automata for following a multi-speaker dialogue. 
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VI. CONCLUSION 

This work has presented results for person identification 

by a humanoid robot, including face recognition, speaker 

recognition, and a fused method combining both face and 

speaker recognition methods. Both face recognition and 

speaker recognition used established algorithms for 

identifying people, but, despite individually strong 

recognition rates, they can fail in a real-time, continuous 

interaction. This is because people are not always looking at 

the robot, a requirement for face recognition, and they are 

not always talking, a requirement for speaker recognition. By 

fusing the two classification systems together with both 

decision and score level fusion, we not only overcome 

missing results from either classifier, but correct for false 

positive results from individual classifiers. 
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